This commit is contained in:
Samuel Oberhofer 2022-07-01 12:30:11 +02:00
parent a5563a4103
commit 8ad105ef56
2 changed files with 140 additions and 0 deletions

View File

@ -0,0 +1,52 @@
# Name of the binary for Development
BINARY = main
# Name of the binary for Release
FINAL = prototyp
# Object files
OBJS = main.o
# Compiler flags
CFLAGS = -Werror -Wall -std=c++17 -g -fsanitize=address,undefined -g
# Linker flags
LFLAGS = -fsanitize=address,undefined
#Which Compiler to use
COMPILER = g++
# all target: builds all important targets
all: binary
final : ${OBJS}
${COMPILER} ${LFLAGS} -o ${FINAL} ${OBJS}
rm ${OBJS}
binary : ${OBJS}
${COMPILER} ${LFLAGS} -o ${BINARY} ${OBJS}
# Links the binary
${BINARY} : ${OBJS}
${COMPILER} ${LFLAGS} -o ${BINARY} ${OBJS}
# Compiles a source-file (any file with file extension .c) into an object-file
#
# "%" is a wildcard which matches every file-name (similar to * in regular expressions)
# Such a rule is called a pattern rule (because it matches a pattern, see https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html),
# which are a form of so called implicit rules (see https://www.gnu.org/software/make/manual/html_node/Implicit-Rules.html)
# "$@" and "$<" are so called automatic variables (see https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html)
%.o : %.cpp
${COMPILER} -c ${CFLAGS} -o $@ $<
# Rules can not only be used for compiling a program but also for executing a program
run: ${BINARY}
./${BINARY}
# Delete all build artifacts
clean :
rm -rf ${BINARY} ${OBJS}
# all and clean are a "phony" targets, meaning they are no files
.PHONY : all clean

View File

@ -0,0 +1,88 @@
#include <cmath>
#include <iostream>
// Konstanten aus der Angabe
#define n 12
#define k 6
#define L 15
// Liste der Primzahlen. Durch die oben angeführten Konstanten ist
// sichergestellt dass diese eindeutig sind
uint16_t listofPrimes[L];
// Random n-bits Zahl generieren. MSB ist immer 1
uint16_t createRandomNumber(uint8_t bits) {
uint16_t result = 1;
for (uint8_t i = 0; i < bits - 1; i++) {
result <<= 1;
result |= rand() % 2;
}
return result;
}
// Check ob eine Zahl Prim ist
bool checkPrime(int number) {
for (int i = 2; i < sqrt(number); i++) {
if (number % i == 0) {
return false;
}
}
return true;
}
// Schreibe n primzahlen größer als start in array
void findPrimesBiggerThan(uint16_t *array, int length, int start) {
for (int i = 0; i < length; i++) {
while (!checkPrime(start)) {
start++;
}
array[i] = start;
start++;
}
}
// die zwei Zahlen die Alice und Bob anfangs aussuchen
int xAlice = createRandomNumber(n);
int xBob = createRandomNumber(n);
// Daten die an Bob übermittelt werden. j = x_A mod p_i. Bob antwortet mit Bool
bool transmitToBob(int i, int j) {
if (j != (xBob % listofPrimes[i])) {
return false;
}
return true;
}
int main() {
// rand() mit timestamp seeden
srand(time(NULL));
// Primzahlen für Alice und Bob initialisieren
findPrimesBiggerThan(listofPrimes, L, pow(2, k));
// Alice sucht ein i zw. 1 und L aus
int iAlice = rand() % L - 1 + 1;
// Counter für false positives
int falseCounter = 0;
long long iterations = 1000000;
for (int i = 0; i < iterations; i++) {
// Frische Zahlen für Alice und Bob derinieren
xAlice = createRandomNumber(n);
xBob = createRandomNumber(n);
// false positive, wenn Bob behauptet die Zahlen wären gleich, sie es aber
// nicht sind
if (transmitToBob(iAlice, xAlice % listofPrimes[iAlice]) &&
xAlice != xBob) {
falseCounter++;
}
}
// false-positive rate in Prozent. Empirisch: ca. 1%
std::cout << 100 * (float)(falseCounter) / iterations << std::endl;
}