Algorithmen_Datenstrukturen/Uebung 3/Uebung3_1/extendedgraph.cpp

279 lines
11 KiB
C++

#include "extendedgraph.h"
#include <map>
ExtendedGraph::ExtendedGraph() { // Default Constructor
this->vertices =
std::vector<std::string>(0); // Empty Vector for this->vertices
this->adjacencyMatrix.resize(
0, std::vector<int>(0)); // 0x0 Matrix for this->adjacencyMatrix
}
/* --
Constructor with params
-- */
ExtendedGraph::ExtendedGraph(const std::vector<std::string> &vertices,
const std::vector<Edge> &edges) {
this->vertices = vertices; // definition of this->vertex through parameter
// vertices (type: std::vector<std::string>)
this->adjacencyMatrix.resize(
vertices.size(),
std::vector<int>(
this->vertices.size())); // creation of an NxN Matrix, based on the
// size of vertices
for (int i = 0; i < edges.size(); i++) {
insertEdge(edges[i]); // edges are added one by one, utilizing the
// insertEdge()-Function
}
}
/* -- /
Function to insert a vertex into the Graph;
- takes one argument of type std::string that represents a vertex
- returns void
/ -- */
void ExtendedGraph::insertVertex(const std::string &vertex) {
if (this->resolveVertex(vertex) != -1) { /* -- */
std::cerr
<< "Vertex already in Graph!\n"; /* Calls this->resolveVertex to check
if a given vertex is already in the
Graph. Returns with an error, if
this is the case. */
return; /* -- */
}
this->vertices.push_back(vertex); // adds a vertetx via the push_back
// function provided by std::vector
this->adjacencyMatrix.resize(
this->vertices.size(),
std::vector<int>(this->vertices.size())); // resizes the adjacencyMatrix
// to the new size
for (int i = 0; i < this->vertices.size(); i++) { /* -- */
adjacencyMatrix[i].resize(
this->vertices.size()); /* resizes every "sub" vector of the matrix to
the new size */
} /* -- */
}
/* -- /
Function to delete a vertex from the Graph;
- takes one argument of type std::string that represents a vertex
- returns void
/ -- */
void ExtendedGraph::deleteVertex(const std::string &vertex) {
int index = this->resolveVertex(vertex);
if (index == -1) { /* -- */
std::cerr << "Vertex not found\n"; /* Calls this->resolveVertex to check if
a given vertex is already in the
Graph. Returns with an error, if this
is the case. */
return; /* -- */
}
this->vertices.erase(
this->vertices.begin() +
index); // erases the vertex at position "index" from this->vertices
this->adjacencyMatrix.erase(
this->adjacencyMatrix.begin() +
index); // erases the entries from the adjacencyMatrix at "column"
// position "index"
for (int i = 0; i < this->adjacencyMatrix[0].size(); i++) { /* -- */
this->adjacencyMatrix[i].erase(this->adjacencyMatrix[i].begin() +
index); /* erases the entries from the
adjacencyMatrix in every "row" */
} /* -- */
}
/* -- /
Function to insert an Edge
- takes one argument of type Edge that represents an edge
- returns void
/ -- */
void ExtendedGraph::insertEdge(const Edge &edge) {
int col = this->resolveVertex(
edge.getSrc()); // resolves the src of the edge to the index within the
// adjacencyMatrix
int row = this->resolveVertex(
edge.getDest()); // resolves the dest of the edge to the index within the
// adjacencyMatrix
if (col == -1 || row == -1) { /* -- */
std::cerr << "Vertex not found!\n"; /* Calls this->resolveVertex to check
if a given vertex is already in the
Graph. Returns with an error, if this
is the case. */
return; /* -- */
}
this->adjacencyMatrix[col][row] =
edge.getWeight(); // sets the value of the adjacencyMatrix at position
// [col][row] to the weight of the edge
}
/* -- /
Function to delete an Edge
- takes one argument of type Edge that represents an edge
- returns void
/ -- */
void ExtendedGraph::deleteEdge(const Edge &edge) {
int col = this->resolveVertex(
edge.getSrc()); // resolves the src of the edge to the index within the
// adjacencyMatrix
int row = this->resolveVertex(
edge.getDest()); // resolves the dest of the edge to the index within the
// adjacencyMatrix
if (col == -1 || row == -1) { /* -- */
std::cerr << "Vertex not found!\n"; /* Calls this->resolveVertex to check
if a given vertex is already in the
Graph. Returns with an error, if this
is the case. */
return; /* -- */
}
this->adjacencyMatrix[col][row] =
0; // sets the value of the adjacencyMatrix at position [col][row] to 0
}
/* -- /
Function to check whether vertex v2 is adjacent to vertex v1
- takes one argument of type Edge that represents an edge
- returns void
/ -- */
bool ExtendedGraph::adjacent(const std::string &vertex1,
const std::string &vertex2) {
int indexVertex1 = this->resolveVertex(vertex1);
int indexVertex2 = this->resolveVertex(vertex2);
if (indexVertex1 == -1 || indexVertex2 == -1) {
std::cerr << "Vertex not found!\n";
return false;
}
// As adjacency is an equivalency relation, we need to check for a possible
// relation in both direction. This can be achieved by swapping the the
// position specifications of the adjacencyMatrix (from
// [indexVertex1][indexVertex2] to [indexVertex2][indexVertex1]).
if (this->adjacencyMatrix[indexVertex1][indexVertex2] != 0 ||
this->adjacencyMatrix[indexVertex2][indexVertex1] != 0) {
return true; // if a connection (in any direction) is found, return true
} else {
return false; // else, return false
}
}
/* -- /
Function that returns an std::vector of std::string representing the
neighbouring vertices of the parameter std::string vertex. Other than adjacent,
neighbourhood is a directed relationship, which means that a vertex "A" can be
the neighbour of "B", but this does not automatically imply that "B" is the
neighbour of "A".
- takes one argument of type std::string that represents a vertex
- returns a std::vector of std::string
/ -- */
std::vector<std::string> ExtendedGraph::neighbours(const std::string &vertex) {
int indexVertex = this->resolveVertex(
vertex); // resolves the vertex to the index within the adjacencyMatrix
std::vector<std::string> resVector =
{}; // initializes an empty std::vetor of std::string
for (int i = 0; i < this->adjacencyMatrix[indexVertex].size();
i++) { /* Loops through all entries of the subvector of
adjacencyMatrix[indexVertex] */
if (this->adjacencyMatrix[indexVertex][i] !=
0) { /* and checks if the entry at position [indexVertex][i] is not 0.
*/
resVector.push_back(
this->vertices[i]); /* If the condition is fulfilled, add the vertex
(name) to the result vector resVector */
}
}
return resVector;
}
/* -- /
Function that prints the current Graph's adjacencyMatrix.
- prints the Graph by utilizing std::cout
- returns void
/ -- */
void ExtendedGraph::printGraph() {
std::cout << "--------------------------------------------\n";
std::cout << "\t\t\t";
for (int i = 0; i < this->vertices.size(); i++) {
std::cout << this->vertices[i] << "\t";
}
std::cout << "\n";
for (int i = 0; i < this->vertices.size(); i++) {
std::cout << " " << this->vertices[i] << "\t\t-->\t";
for (int j = 0; j < this->vertices.size(); j++) {
std::cout << this->adjacencyMatrix[i][j] << "\t";
}
std::cout << "\n";
}
std::cout << "--------------------------------------------\n";
};
/* -- /
Function that resolves a parameter std::string name and returns it's index
within the this->vertices vector; between vertices of type std::string and the
corresponding index (in the adjacencyMatrix) of type int.
- takes one argument of type std::string that represents a vertex
- returns an int representing the vertex's index in the adjacencyMatrix;
- function returns -1 in case the resolution of the name is unsuccessful
/ -- */
int ExtendedGraph::resolveVertex(const std::string &vertexName) {
for (int i = 0; i < this->vertices.size(); i++) {
if (this->vertices[i] == vertexName) {
return i;
}
}
return -1;
}
int ExtendedGraph::minDistance(int dist[], bool sptSet[]) {
int min = INT_MAX, min_index;
for (int v = 0; v < this->vertices.size(); v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
void ExtendedGraph::performDijkstraPath(std::string sourceVertex,
std::string targetVertex) {
int dist[this->vertices.size()];
bool sptSet[vertices.size()];
int parent[vertices.size()];
for (int i = 0; i < vertices.size(); i++) {
parent[i] = -1;
}
for (int i = 0; i < this->vertices.size(); i++) {
dist[i] = INT_MAX;
sptSet[i] = false;
}
dist[resolveVertex(sourceVertex)] = 0;
for (int count = 0; count < this->vertices.size() - 1; count++) {
int m = minDistance(dist, sptSet);
sptSet[m] = true;
for (int v = 0; v < vertices.size(); v++) {
if (!sptSet[v] && this->adjacencyMatrix[m][v] && dist[m] != INT_MAX &&
dist[m] + this->adjacencyMatrix[m][v] < dist[v]) {
dist[v] = dist[m] + this->adjacencyMatrix[m][v];
parent[v] = m;
}
}
if (sptSet[resolveVertex(targetVertex)]) {
break;
}
}
std::cout << sourceVertex << " ";
int sumPath = 0;
printPath(parent, resolveVertex(targetVertex), dist, sumPath);
std::cout << "; Gesamter Zollbetrag: " << sumPath << std::endl;
}
void ExtendedGraph::printPath(int parent[], int j, int dist[], int &sum) {
// Base Case : If j is source
if (parent[j] == -1)
return;
printPath(parent, parent[j], dist, sum);
std::cout << " -(" << this->adjacencyMatrix[parent[j]][j] << ")-> "
<< this->vertices[j] << std::flush;
sum += adjacencyMatrix[parent[j]][j];
}