Compare commits

...

5 Commits

Author SHA1 Message Date
Samuel Oberhofer a5563a4103 6.1 2022-06-28 21:19:13 +02:00
Samuel Oberhofer cf6edcdff6 PartialWeight and partialValue for continuous case 2022-06-26 15:44:14 +02:00
Samuel Oberhofer 7dc503ca13 Make continuous packing optional 2022-06-26 15:37:52 +02:00
Samuel Oberhofer 8a95eb668b Make Solution Continuous 2022-06-26 15:32:16 +02:00
Samuel Oberhofer c9d5a7a84c Initial 5_3 2022-06-26 15:29:55 +02:00
12 changed files with 514 additions and 0 deletions

View File

@ -0,0 +1,52 @@
# Name of the binary for Development
BINARY = main
# Name of the binary for Release
FINAL = prototyp
# Object files
OBJS = backpack.o item.o main.o
# Compiler flags
CFLAGS = -Werror -Wall -std=c++17 -fsanitize=address,undefined -g
# Linker flags
LFLAGS = -fsanitize=address,undefined
#Which Compiler to use
COMPILER = c++
# all target: builds all important targets
all: binary
final : ${OBJS}
${COMPILER} ${LFLAGS} -o ${FINAL} ${OBJS}
rm ${OBJS}
binary : ${OBJS}
${COMPILER} ${LFLAGS} -o ${BINARY} ${OBJS}
# Links the binary
${BINARY} : ${OBJS}
${COMPILER} ${LFLAGS} -o ${BINARY} ${OBJS}
# Compiles a source-file (any file with file extension .c) into an object-file
#
# "%" is a wildcard which matches every file-name (similar to * in regular expressions)
# Such a rule is called a pattern rule (because it matches a pattern, see https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html),
# which are a form of so called implicit rules (see https://www.gnu.org/software/make/manual/html_node/Implicit-Rules.html)
# "$@" and "$<" are so called automatic variables (see https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html)
%.o : %.cpp
${COMPILER} -c ${CFLAGS} -o $@ $<
# Rules can not only be used for compiling a program but also for executing a program
run: ${BINARY}
./${BINARY}
# Delete all build artifacts
clean :
rm -rf ${BINARY} ${OBJS}
# all and clean are a "phony" targets, meaning they are no files
.PHONY : all clean

View File

@ -0,0 +1,91 @@
#include "backpack.h"
#include <algorithm>
#include <cmath>
/* Optimized insertion sort algorithm utilizing the Item's getRatio() function
*/
void Backpack::sortAvailableItems() {
int i = 0;
while (i < (int)this->availableItems.size()) {
Item x = this->availableItems[i];
int j = i - 1;
while (j >= 0 && this->availableItems[j].getRatio() < x.getRatio()) {
this->availableItems[j + 1] = this->availableItems[j];
j--;
}
this->availableItems[j + 1] = x;
i++;
}
}
/* Iterates through all packed items and returns the total value */
int Backpack::getValuePacked() {
int total = 0;
for (int i = 0; i < (int)this->packedItems.size(); i++) {
total += this->packedItems[i].value;
}
return total;
}
/* the algorithm to pack the backpack */
void Backpack::greedyPack(bool continuous) {
this->packedItems
.clear(); /* resets the packedItems -> removes all elements! */
this->currentWeight = 0; /* ...and also sets the current weight to 0.0 */
this->sortAvailableItems(); // sort the available items first!
const char *text = "";
float partialValue = 0.0f;
float partialWeight = 0.0f;
if (!continuous) {
text = "non-";
}
std::cout << "Backpack has been packed " << text
<< "continuously:\n"; // output
std::cout << "\t\tWeight\tValue\n"; // output
std::cout << "---------------------------------------------\n"; // output
for (int i = 0; i < (int)this->availableItems.size();
i++) { // iterate through all available items
if (this->currentWeight + (float)this->availableItems[i].weight <=
this->maxWeight) { // check if the item still fits in the backpack
this->packedItems.push_back(
this->availableItems[i]); // and if so, put it in there (by adding it
// to this->packedItems)
currentWeight +=
this->availableItems[i].weight; // adjust currentWeight accordingly
std::cout << "\t" << this->availableItems[i].name << ":\t"
<< this->availableItems[i].weight << "\t"
<< this->availableItems[i].value
<< "\t Factor: 1.00\n"; // output
} else if (continuous) {
float factor = (float)(this->maxWeight - this->currentWeight) /
this->availableItems[i].weight;
factor = std::round(factor * 100) / 100;
std::cout << "\t" << this->availableItems[i].name << ":\t"
<< this->availableItems[i].weight << "\t"
<< this->availableItems[i].value << "\t Factor: " << factor
<< std::endl;
partialWeight = this->availableItems[i].weight * factor;
partialValue = this->availableItems[i].value * factor;
break;
}
if ((this->currentWeight - this->maxWeight) ==
0) { // if the backpack is completely full, the loop can be exited -
// small optimization
break;
}
}
std::cout << "---------------------------------------------\n"; // output
std::cout << "\tTotal:\t" << this->currentWeight + partialWeight << "\t"
<< this->getValuePacked() + partialValue << "\n"; // output
}
void Backpack::printItems() {
for (int i = 0; i < (int)this->availableItems.size(); i++) {
std::cout << this->availableItems[i].name << "\t"
<< this->availableItems[i].weight << "\t"
<< this->availableItems[i].value << "\t"
<< this->availableItems[i].getRatio() << "\n";
}
}

View File

@ -0,0 +1,31 @@
#include <iostream>
#include <string>
#include <vector>
#include "item.h"
#pragma once
/* Class for Backpack, consisting of a maxWeight that can be put into a
backpack, one that shows the weight that is currently in the backpack, a
vector representing all available items and a vector for the items that have
been placed in the backpack. There is also a constructor to increase the
ease/convenience of use, as well as functions to:
* sort the available Items based on their getRatio()
* greedily pack the backpack
* get the value of all packed items
*/
struct Backpack {
int maxWeight;
std::vector<Item> availableItems;
int currentWeight;
std::vector<Item> packedItems;
Backpack(float maxWeight, std::vector<Item> availableItems)
: maxWeight(maxWeight), availableItems(availableItems),
currentWeight(0){};
void sortAvailableItems();
void greedyPack(bool continuous);
int getValuePacked();
void printItems();
};

View File

@ -0,0 +1,5 @@
#include "item.h"
/* function that returns the value/weight ratio of an item as float; used to
* sort items */
float Item::getRatio() { return ((float)this->value / (float)this->weight); };

17
Uebung 5/Uebung5_3/item.h Normal file
View File

@ -0,0 +1,17 @@
#include <string>
#pragma once
/* Class for Item, containing name (string), value (int) and weight (int).
There is also a constructor that can be called with all member variables to
increase convenience. The getRatio() function returns the value/weight ratio
*/
class Item {
public:
std::string name;
int weight;
int value;
Item(std::string name, int weight, int value)
: name(name), weight(weight), value(value){};
float getRatio();
};

View File

@ -0,0 +1,15 @@
#include "backpack.h"
#include "item.h"
#include <vector>
int main() {
std::vector<Item> items = {// creation of the availableItems
{"1", 5, 8}, {"2", 5, 8}, {"3", 6, 6},
{"4", 8, 5}, {"5", 10, 10}, {"6", 11, 5},
{"7", 12, 10}, {"8", 15, 17}, {"9", 15, 20},
{"10", 30, 20}};
Backpack bp((float)24,
items); // creation of the backpack, utilizing the constructor
bp.greedyPack(false); // greedily pack Backpack non-continuously
bp.greedyPack(true); // greedily pack Backpack continuously
}

View File

@ -0,0 +1,52 @@
# Name of the binary for Development
BINARY = main
# Name of the binary for Release
FINAL = prototyp
# Object files
OBJS = mergeSortRand.o helperFunctions.o main.o
# Compiler flags
CFLAGS = -Werror -Wall -std=c++17 -g#-fsanitize=address,undefined -g
# Linker flags
LFLAGS = #-fsanitize=address,undefined
#Which Compiler to use
COMPILER = g++
# all target: builds all important targets
all: binary
final : ${OBJS}
${COMPILER} ${LFLAGS} -o ${FINAL} ${OBJS}
rm ${OBJS}
binary : ${OBJS}
${COMPILER} ${LFLAGS} -o ${BINARY} ${OBJS}
# Links the binary
${BINARY} : ${OBJS}
${COMPILER} ${LFLAGS} -o ${BINARY} ${OBJS}
# Compiles a source-file (any file with file extension .c) into an object-file
#
# "%" is a wildcard which matches every file-name (similar to * in regular expressions)
# Such a rule is called a pattern rule (because it matches a pattern, see https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html),
# which are a form of so called implicit rules (see https://www.gnu.org/software/make/manual/html_node/Implicit-Rules.html)
# "$@" and "$<" are so called automatic variables (see https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html)
%.o : %.cpp
${COMPILER} -c ${CFLAGS} -o $@ $<
# Rules can not only be used for compiling a program but also for executing a program
run: ${BINARY}
./${BINARY}
# Delete all build artifacts
clean :
rm -rf ${BINARY} ${OBJS}
# all and clean are a "phony" targets, meaning they are no files
.PHONY : all clean

View File

@ -0,0 +1,20 @@
#include "helperFunctions.h"
#include <ctime>
void printArray(int* array, int arrayLength, std::string heading) {
std::cout << "========== " << heading << " ==========" << std::endl;
for(int i = 0; i < arrayLength; i++) {
if(i > 0) {
std::cout << " - ";
}
std::cout << array[i];
}
std::cout << std::endl << "==============================================" << std::endl;
}
void generateRandomIntArray(int* array, int arrayLength) {
std::srand(std::time(NULL));
for(int i = 0; i < arrayLength; i++) {
array[i] = rand() % 100000 + 1;
}
}

View File

@ -0,0 +1,7 @@
#include <string>
#include <iostream>
#pragma once
void generateRandomIntArray(int* array, int arrayLength);
void printArray(int* array, int arrayLength, std::string heading);

157
Uebung 6/Uebung6_1/main.cpp Normal file
View File

@ -0,0 +1,157 @@
#include <iostream>
#include <string>
#include "helperFunctions.h"
#include "mergeSortRand.h"
#include <vector>
#define ARRAY_LENGTH 10
class PerformanceTest {
private:
double minExecutionTime;
double maxExecutionTime;
double totalExecutionTime;
std::string algorithmName;
public:
PerformanceTest() {
this->minExecutionTime = 1000;
this->maxExecutionTime = 0;
this->totalExecutionTime = 0;
this->algorithmName = "";
};
double getMinExecutionTime() { return this->minExecutionTime; }
double getMaxExecutionTime() { return this->maxExecutionTime; }
double getTotalExecutionTime() { return this->totalExecutionTime; }
const std::string &getAlgorithmName() { return this->algorithmName; }
void setAlgorithmName(std::string name) { this->algorithmName = name; }
void processResult(std::chrono::high_resolution_clock::time_point startTime,
std::chrono::high_resolution_clock::time_point endTime) {
std::chrono::duration<double, std::milli> duration = (endTime - startTime);
double execTime = duration.count();
this->totalExecutionTime += execTime;
if (execTime < this->minExecutionTime) {
this->minExecutionTime = execTime;
return;
} else if (execTime > this->maxExecutionTime) {
this->maxExecutionTime = execTime;
return;
}
}
};
class PerformanceComparison {
private:
int *baseArray;
int arrayLength;
int testsetSize;
std::vector<PerformanceTest *> testResults;
public:
PerformanceComparison(int arrayLength, int testsetSize) {
this->arrayLength = arrayLength;
this->testsetSize = testsetSize;
this->baseArray =
(int *)malloc(sizeof(int) * this->arrayLength * this->testsetSize);
generateRandomIntArray(this->baseArray,
this->arrayLength * this->testsetSize);
}
~PerformanceComparison() {
free(this->baseArray);
for (int i = 0; i < this->testResults.size(); i++) {
free(testResults[i]);
}
}
void runTest(int algorithm) {
PerformanceTest *pt = new PerformanceTest();
if (algorithm == 1) {
pt->setAlgorithmName("MergeSort");
for (int i = 0; i < this->testsetSize; i++) {
int testArray[this->arrayLength];
std::memcpy(testArray, this->baseArray + (this->arrayLength * i),
this->arrayLength * sizeof(int));
auto startTime = std::chrono::high_resolution_clock::now();
mergeSort(testArray, 0, arrayLength - 1);
auto endTime = std::chrono::high_resolution_clock::now();
pt->processResult(startTime, endTime);
}
} else if (algorithm == 2) {
pt->setAlgorithmName("MergeSortRand");
for (int i = 0; i < this->testsetSize; i++) {
int testArray[this->arrayLength];
std::memcpy(testArray, this->baseArray + (this->arrayLength * i),
this->arrayLength * sizeof(int));
auto startTime = std::chrono::high_resolution_clock::now();
mergeSortRand(testArray, 0, arrayLength - 1);
auto endTime = std::chrono::high_resolution_clock::now();
pt->processResult(startTime, endTime);
}
} else {
std::cerr << "Algorithm not recognized!" << std::endl;
exit(1);
}
this->testResults.push_back(pt);
};
void printComparison(int mode) {
if (mode == 1) {
std::cout << "Algorithm\t\tMIN\t\t\tMAX\t\t\tAVG\t\t\tTOTAL" << std::endl;
for (int i = 0; i < this->testResults.size(); i++) {
std::cout << this->testResults[i]->getAlgorithmName() << "\t\t"
<< this->testResults[i]->getMinExecutionTime() << "\t\t"
<< this->testResults[i]->getMaxExecutionTime() << "\t\t"
<< this->testResults[i]->getTotalExecutionTime() /
this->testsetSize
<< "\t\t" << this->testResults[i]->getTotalExecutionTime()
<< std::endl;
}
} else if (mode == 2) {
std::cout << "Algorithm\tTOTAL\t\tAVG" << std::endl;
for (int i = 0; i < this->testResults.size(); i++) {
std::cout << this->testResults[i]->getAlgorithmName() << "\t\t"
<< this->testResults[i]->getTotalExecutionTime() << " \t\t"
<< this->testResults[i]->getTotalExecutionTime() /
this->testsetSize
<< std::endl;
}
} else {
std::cerr << "Mode not recognized!" << std::endl;
exit(1);
}
}
};
int main() {
srand(time(0));
int array[ARRAY_LENGTH];
int array2[ARRAY_LENGTH];
generateRandomIntArray(array, ARRAY_LENGTH);
memcpy(array2, array, ARRAY_LENGTH * sizeof(int));
printArray(array, ARRAY_LENGTH, "Unsortiertes Array");
mergeSort(array, 0, ARRAY_LENGTH - 1);
printArray(array, ARRAY_LENGTH, "Array nach MergeSort");
mergeSortRand(array2, 0, ARRAY_LENGTH - 1);
printArray(array2, ARRAY_LENGTH, "Array nach MergeSortRand");
for (int i = 0; i < ARRAY_LENGTH; i++) {
if (array[i] != array2[i]) {
std::cout << "ERROR" << std::endl;
exit(0);
}
}
PerformanceComparison pc(10, 10000);
pc.runTest(1);
pc.runTest(2);
pc.printComparison(1);
}

View File

@ -0,0 +1,62 @@
#include "mergeSortRand.h"
//#include <cstdlib>
#include <iostream>
void merge(int array[], int left, int middle, int right) {
int n1 = middle - left + 1;
int n2 = right - middle;
int leftArray[n1];
int rightArray[n2];
for (int i = 0; i < n1; i++) {
leftArray[i] = array[left + i];
}
for (int j = 0; j < n2; j++) {
rightArray[j] = array[middle + j + 1];
}
int k = 0, l = 0, m = left;
while (k < n1 && l < n2) {
if (leftArray[k] <= rightArray[l]) {
array[m] = leftArray[k];
k++;
} else {
array[m] = rightArray[l];
l++;
}
m++;
}
while (k < n1) {
array[m] = leftArray[k];
k++;
m++;
}
while (l < n2) {
array[m] = rightArray[l];
l++;
m++;
}
}
void mergeSortRand(int array[], int left, int right) {
if (left < right) {
int middle = (rand() % (right - left + 1)) + left;
if (middle < left || middle > right) {
std::cout << "ERROR2" << std::endl;
}
mergeSortRand(array, left, middle);
mergeSortRand(array, middle + 1, right);
merge(array, left, middle, right);
}
}
void mergeSort(int array[], int left, int right) {
if (left < right) {
int middle = left + (right - left) / 2;
mergeSort(array, left, middle);
mergeSort(array, middle + 1, right);
merge(array, left, middle, right);
}
}

View File

@ -0,0 +1,5 @@
#pragma once
void merge(int array[], int left, int middle, int right);
void mergeSort(int array[], int left, int right);
void mergeSortRand(int array[], int left, int right);